

March 2018

ELLEGAARD EXHIBITOR HOSTED SESSION

ANTICANCER DRUG DEVELOPMENT COMPARISON OF TOXICITY IN MINIPIG AND MOUSE

Drug Development

Crop Protection

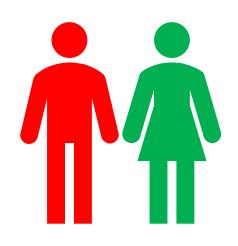
Chemical Safety

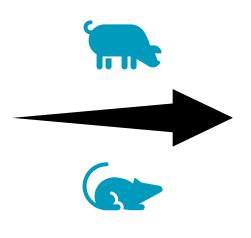
Increasingly
Cancer
Touches

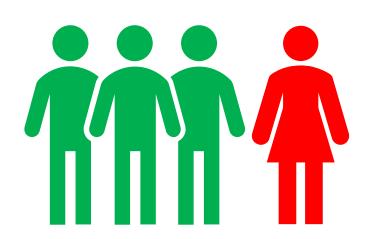
Increased Survival Driven by Animal Research

Cancer Survival has Doubled in the Last 40 Years

Animal Research Critical to this Progress


Continued Animal Work Vital to Save More Lives





Forecast

Aspiration

Cancer will affect 1 in 2

Aspiration > 75% survival

Anticancer Drug Development

↑↑↑ of promising small molecule anticancer agents have been developed

Few shown to be safe and efficacious in humans

Considerable impact in Development and Human Cost

Improved Pre-Clinical Assessment of candidates needed

Clinical ethics drives minimising pre-clinical toxicology

Early stage clinical trials in cancer patients are often initiated with limited toxicology data

A clinical trial at a dose < efficacious is undesirable

A clinical trial producing unexpected severe toxicity is even worse

great people, great work, real results

Most Commonly Used Model

Historically the Only Pre-Clinical Species

Similar to Human Genome

Variety of Genetic Models

Extensive Background Data

Predictivity Non-Clinical to Clinical

Mouse

Not always reliable – drugs work well at preclinical stage but ineffective in clinical trials – e.g. 9-aminocamtothecin

Mouse bone marrow potentially less sensitive than human

Fundamental challenge for clinical cancer drug development

great people, great work, real results

Other Species

NHP

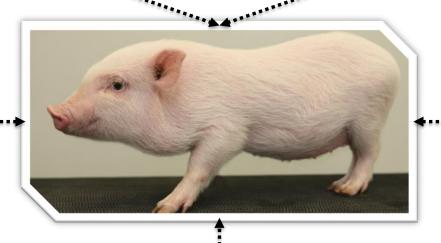
- Likely similar bone marrow sensitivity to man
- Expensive
- Ethical concerns
- Disease status (immunosuppression)

Dog

- Possibly similar bone marrow sensitivity to man
- Prone to emesis
- Ethical concerns (charities)

Minipig

- Possibly similar bone marrow sensitivity to man
- Less prone to emesis
- High throughput –
 cost effective
- Reduced ethical concern



Alternative species

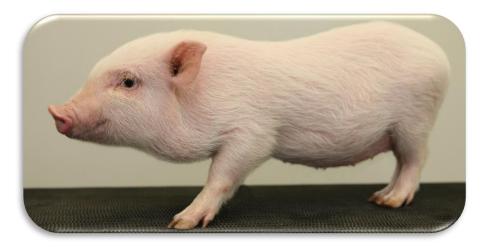
Growing use – well accepted non-rodent species

Regulatory pressure to use two species

Similar to Human Genome

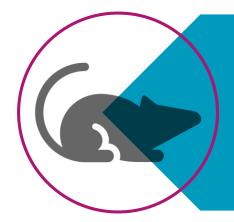
Increasing #
Genetic
Models

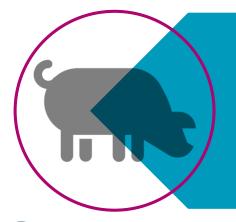
Extensive Background Data



STUDY DATA COMPARISON

Mouse versus Minipig





Non-Clinical Studies conducted

Test Item: Novel Oral Anti-cancer drug (non-solid tumours)

Preliminary and 14 Day Study in the Mouse

- MTD and Range Finder in the Minipig
- 28 Day Minipig with a 28 Day Treatment-Free Period

Mouse – Preliminary and 14 Day Study

Study Design

Group	Dose level (mg/kg bid)	Number of Males	of animals Females	Duration of dosing			
Preliminary phase							
5	150	2	2	7 days			
6	225	2	2	up to 7 days			
7	100	2	2	7 days			
8	125	2	2	7 days			
Dose range finding pha	Dose range finding phase						
1	75	12	12	14 days			
2	125	12	12	12 days			
3	75	3	3	14 days			
4	125	3	3	13 days			

Minipig – MTD and Range-Finding Study

Study Design - Phase 1

Group	Animal	Dose level (mg/kg bid) on						
		Days						
		1 - 4	5 - 11	12 - 25	26 - 32	33	34 - 37	
	Male 95	0	6	ND	9	ND	12	Necropsy (Day 34)
	Female 98	0	6	ND	9	ND	12	Necropsy (Day 37)

Study Design – Phase 2

	Animal I	Dose (mg/kg bid)	
Group	Males	Females	
2	97	99	6
3	101	100	9

Minipig – 28 Day Study with 28 Day Treatment- Free Period

great people, great work, real results

Study Design

Group	Number of animals		Animal ID numbers		Dose level (mg/kg bid)	Dose concentration	
	Males	Females	Males	Females		(mg/mL bid)	
1	5	5	33 - 37	51 - 53, 57, 58	Control	0	
2	3	3	38 - 40	46 - 48	3	0.6	
3	5	5	41 - 45	49, 50, 54 - 56	6	1.2	

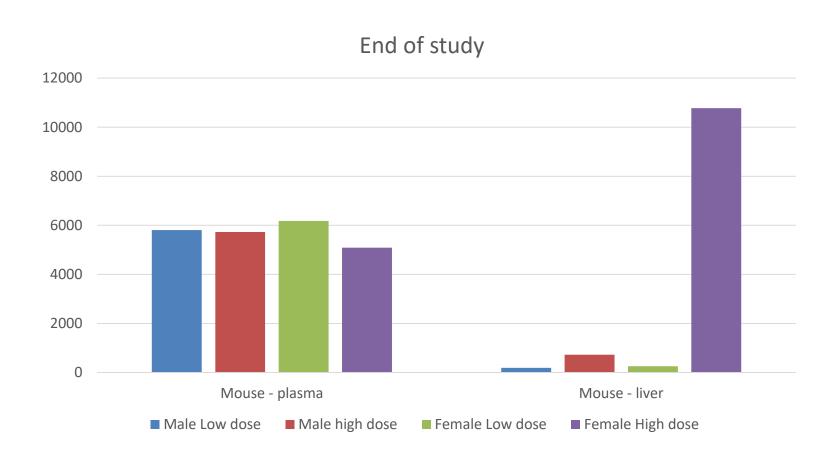
Dose Level Comparison

	Mouse Minipig				
Dose Level	mg/kg BID				
Low	75	3			
High	125	6			

Minipig dose levels more in line with human dose levels

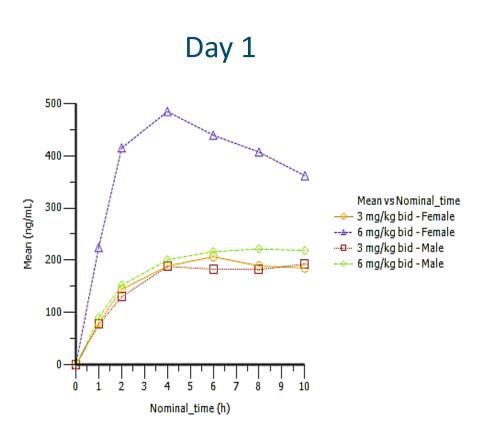
Measured Study Endpoints

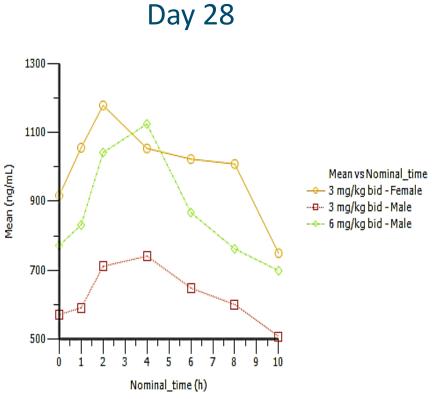
great people, great work, real results


	Mouse	Minipig	
Clinical Observations	post-dose and daily	post-dose and daily	
Body weights	twice weekly, daily	weekly	
Food consumption	twice weekly		
Ophthalmoscopy		acclimatisation and end of study	
Electrocardiograms		acclimatisation and end of study	
Haematology	end of study	acclimatisation and end of study (additional 0.1 mL taken twice weekly)	
Blood Chemistry	end of study	acclimatisation and end of study	
Urinalysis		at necropsy, by cystocentesis	
Proof of Absorption/TK	end of study	Day 1 and Day 28	
Organ weights			
Pathology			

Proof of Absorption - Mouse

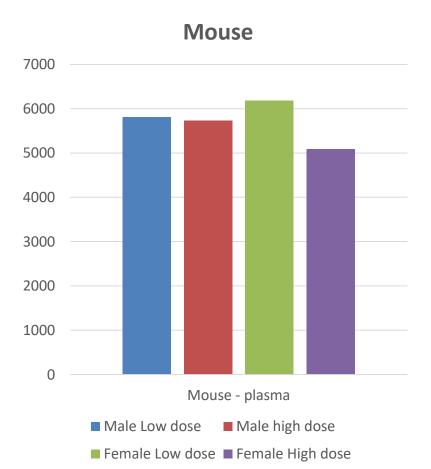
Plasma and Liver concentrations

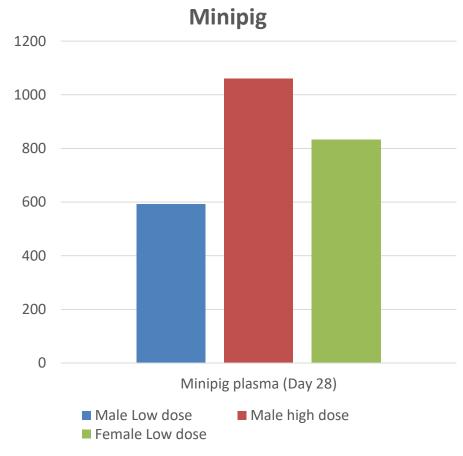




TK Data - Minipig

Mean Plasma Profiles





Proof of Absorption comparison

Plasma concentrations – end of study (1 hour)

Clinical Observations - Similarities to Human

Mouse

Piloerection

Pale Extremities

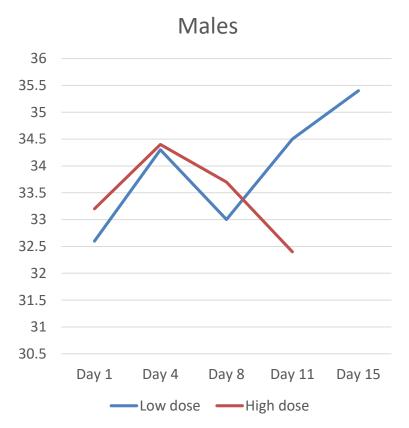
Decreased Activity

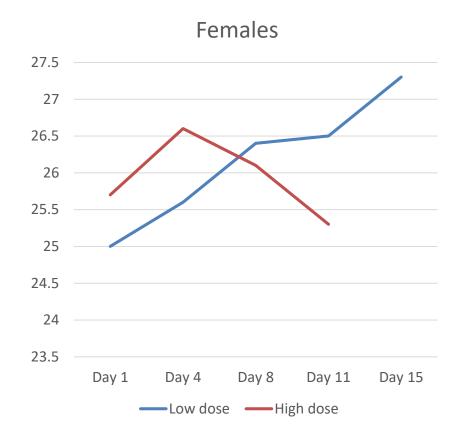
Hunched Posture

Minipig

Tremors

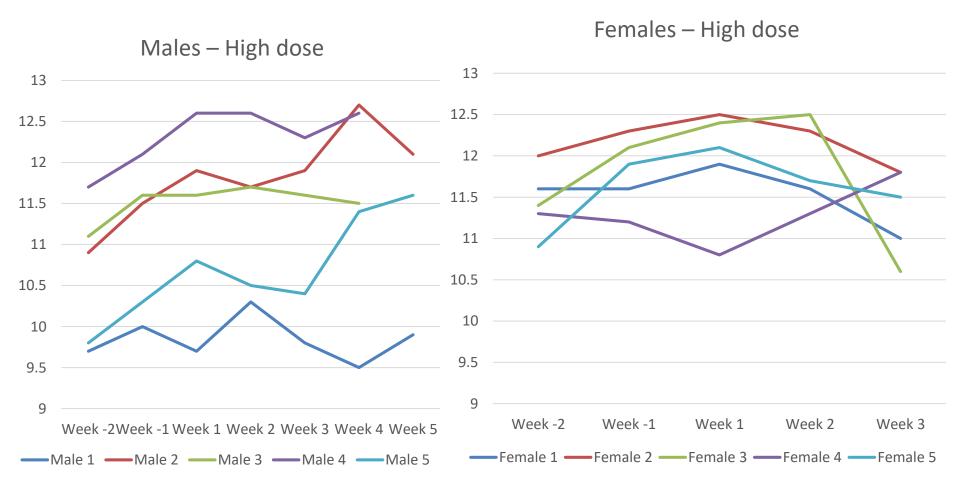
Vomiting

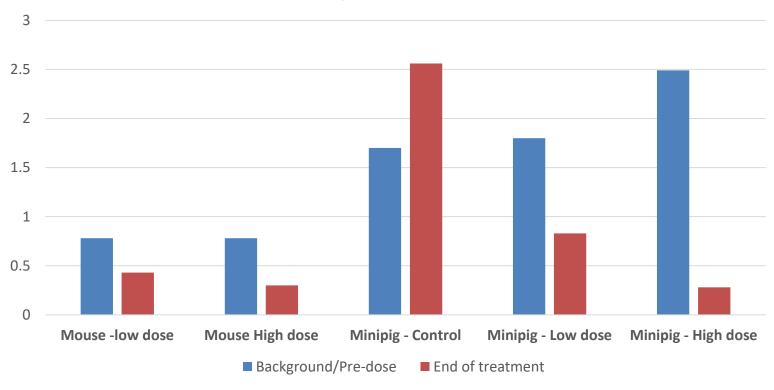

Subdued Behaviour



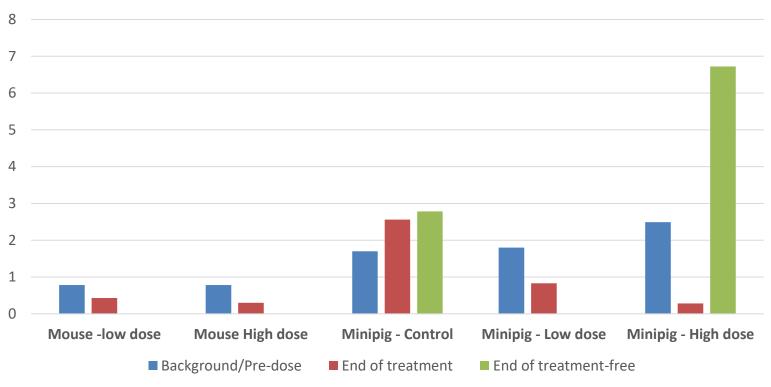
In-Life Findings – Body weights

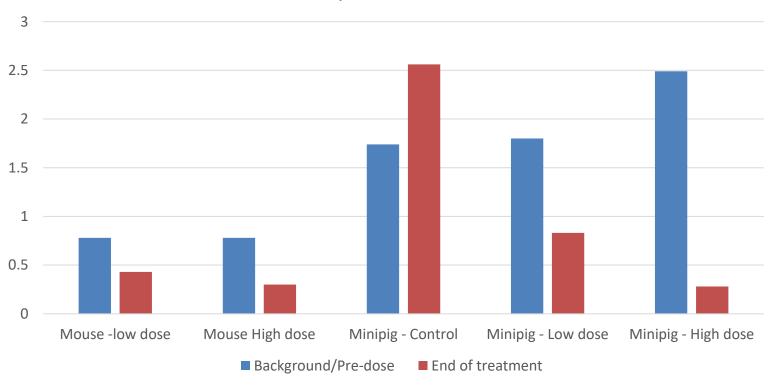
Mouse

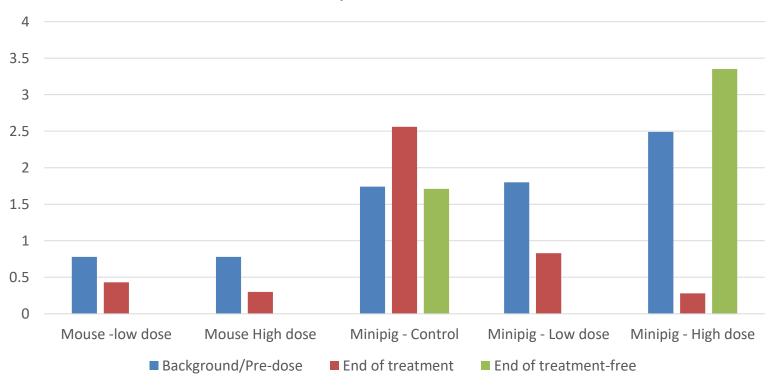



In-Life Findings – Body weights

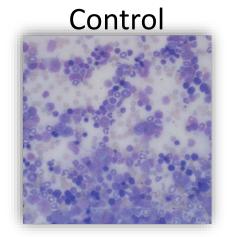
Minipig

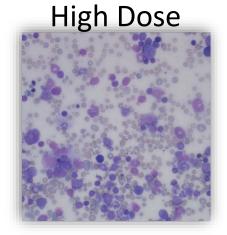

Clinical Pathology Results - Males

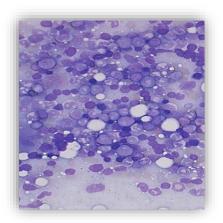

Clinical Pathology Results - Males

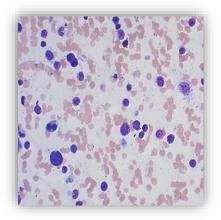

Clinical Pathology Results - Females

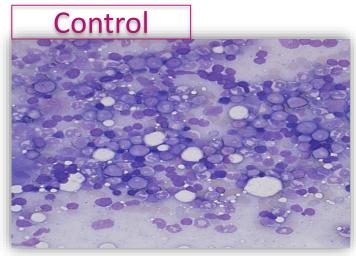
Clinical Pathology Results - Females

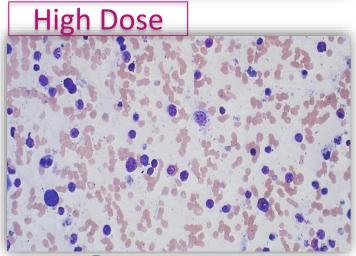




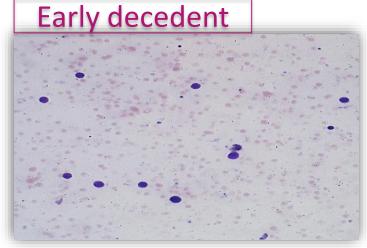

Bone Marrow Smear



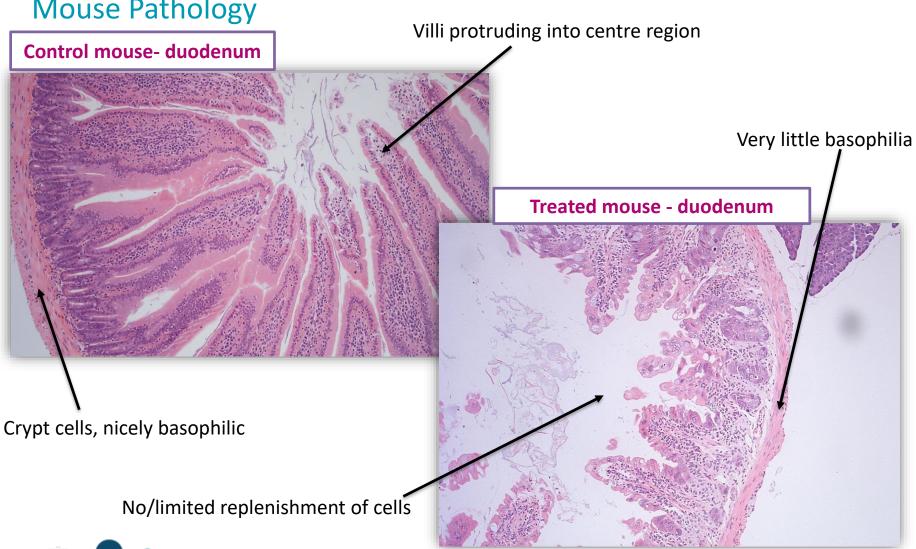






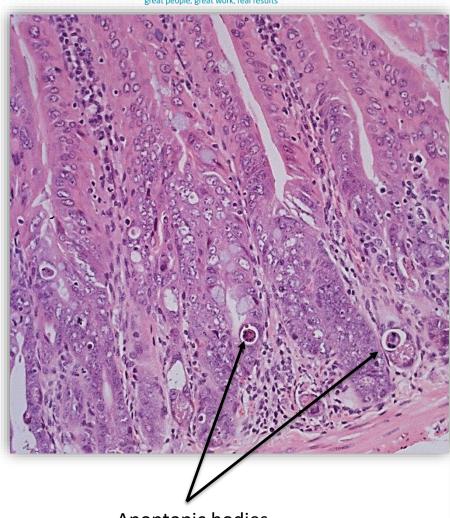


Bone Marrow Smear Depletion



Pathology

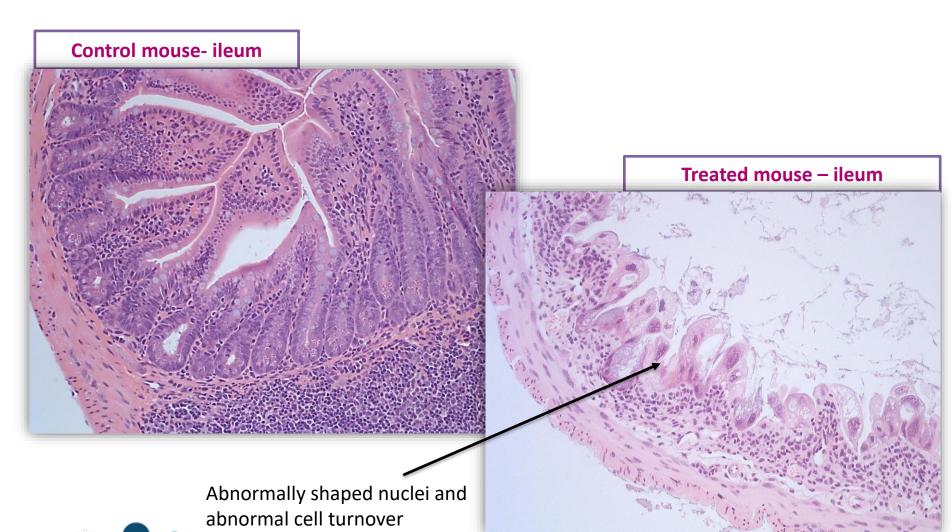
Mouse Pathology


reat people, great work, real results

Pathology

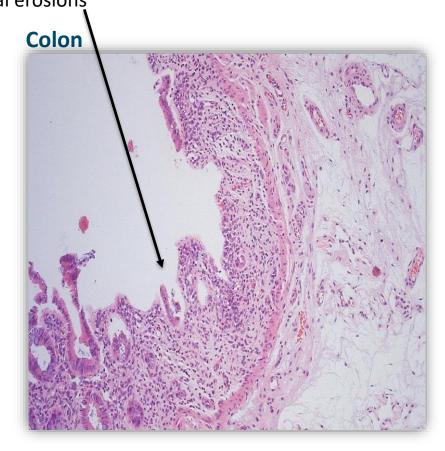
Treated mouse – duodenum

Crypt region knocked out



Pathology

Mouse Pathology



Pathology - Minipig

Minipig Pathology

Surface focal erosions

Longer duration repeat dose toxicity study

Animals closely monitored (haematology) and taken off dose when necessary

Clinical signs and pathology similar to man

Haematology: reduction in total white cell count (neutropenia, lymphocytopenia)

→ changes fully reversible

Main pathology: bone marrow and intestines

There were non-responders on the study!

Clinical use in humans

Expected dose levels similar to those selected for minipigs, mice > 10x higher

Main pathology in humans:
<a href="https://doi.org/10.2016/j.jup.2

Responders and non-responders (man and minipig)

Pros and Cons

	Pros		Cons	
	Minipig	Mouse	Minipig	Mouse
Pre-clinical cost		V	V	
Additional Haematology monitoring	V			٧
Similarity to humans :-				
Clinical signs	V			V
Haematology effects	V			٧
Bone marrow effects	V			V

Overall Conclusions

most frequently used model for anticancer drugs.

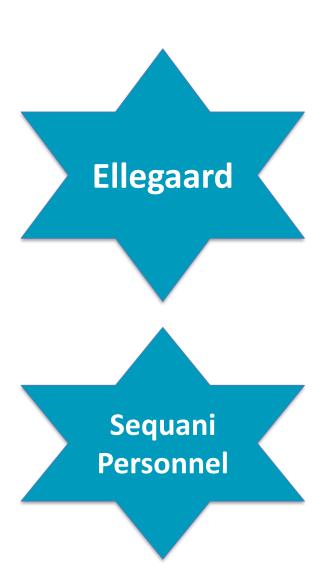
frequent disappointments when moving into clinical trials.

high cost in both financial and human terms of clinical failures.

better preclinical model is called for.

offers a viable non-rodent species or alternative to commonly used rodent models.

monitor parameters throughout the study.


although the initial cost is higher

outweighed by improved prediction of clinical efficacy.

Acknowledgements

Thank you for your Attention

Easy Questions ????

